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1 Introduction

The purpose of this document is to define the scientific attributes of DAO’s next-
generation Core Data Assimilation System (Core DAS) currently being developed at
NASA’s Data Assimilation Office. More specifically, we focus on the first configura-
tion of a Core DAS based on the NASA-NCAR General Circulation Model and the
Physical-space Statistical Analysis System; we will refer to this early configuration
as the Violet Core system. This document will concentrate on establishing the sci-
entific requirements for the Violet system; software issues are not addressed here. In
particular, issues related to I/O, pre- and post-processing, as well as monitoring, are
beyond the scope of this document.

The Violet Core System consists of the following main components:

General Circulation Model. The General Circulation Model used for this Core
DAS is the model jointly developed by the Data Assimilation Office (DAO) and
the Climate and Global Dynamics Division (CGDD) at NCAR. This model is
based on the finite-volume dynamical core developed at DAO (Lin and Rood
1996, Lin and Rood 1997, Lin 1997, Lin and Rood 1998) with physical param-
eterizations from the NCAR CCM3 (Kiehl et al. 1996). For additional details
see the companion document DAO ATBD / Next-Generation Model.

Quality Control. The Statistical Quality Control (SQC) System is used to screen
observational data prior to assimilation. This QC system consists of simple
check of the observations against a background field, followed by an adaptive
buddy check which adjusts error bounds according to the flow of the day.

Analysis System. The Physical-space Statistical Analysis System (PSAS, Cohn et
al 1998) is used to combine a first guess from the NASA-NCAR GCM with ob-
servational data to provide an updated estimate of the state of the atmosphere.

The NASA-NCAR GCM is a completely new model which which replaces the GEOS
GCM used in the GEOS-1/2/3 Data Assimilation systems; see DAO (1996) and the
companion document DAO ATBD / GEOS-Terra for description of GEOS GCM.
A particular configuration of SQC and PSAS are currently implemented in GEOS-
Terra system which is about to become operational. However, the unique finite-
volume formulation of the NASA-NCAR GCM, combined with the generality of the
observation-space formulation of PSAS, call for a complete redesign of the current
GEOS DAS model-analysis interface which has its roots in the Optimum Interpolation
(OI) algorithm of GEOS-1 DAS (Pfaendtner et al. 1994). The main characteristics
of this new model-analysis interface are:

• The system works in both observation and finite-volume spaces, with no inter-
mediate constant pressure transformations necessary. Therefore, the p-to-σ and
σ-to-p interpolations of GEOS DAS have been eliminated.

• Observations are accurately simulated from model fields by mapping volume-
mean fields into observables. Proper consideration is taken of the nature of the
observable (e.g., layer-mean vs. point measurements).

• PSAS now produces analysis increments directly on model grid, this way pre-
serving the balance relationships implied by the error covariance formulation.
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• The surface and upper-air analyzes have been unified, thus ensuring the consis-
tency between surface pressure and low-level geopotential height analysis, and
maximizing the impact of surface wind observations on the upper-air fields.

• The initial Violet Core System will include a Rapid Update Cycle (RUC) with
analysis performed approximately every hour.

• As shown theoretically in Bloom et al (1995), and confirmed by ongoing RUC
research based on GEOS DAS (da Silva and Lou, personal communication), the
incremental analysis update (IAU) scheme of GEOS DAS is quite ineffective as
a low-pass filter when the analysis interval is shortened to one hour. Therefore,
the Violet Core System will not include IAU. The need for IAU or any other
form of initialization during the assimilation cycle will be determined by our
experience with this initial system.

• In part due to the elimination of IAU, the extended (5-day) forecast procedure
will include a simple digital filter aimed at improving forecast skills.

This document is organized as follows. A general description of the sequential data
assimilation algorithm is presented in section 2, identifying the main system com-
ponents. The NASA-NCAR general circulation model is described in companion
document DAO ATBD / Next-Generation Model. The general idea behind the adap-
tive Statistical Quality Control (SQC) System is introduced in section 3, along with
a description of the main observation screening tests. The Physical-space statistical
analysis system is outlined in section 4, with a comprehensive list of PSAS technical
references. Besides the new model, the second most unique feature of this data assim-
ilation system is how we interface the finite-volume GCM fields to the physical-space
formulation of PSAS; the details of this interface appear in section 5. Some of the
issues relating to the physical balance of analysis state and the potential need for
initialization are discussed in section 6. The initial system configuration, including
resolution, and the overall validation strategy are given in section 7. A partial list of
open problems and issues which have not been addressed by this initial Violet Core
system are included in section 8. Concluding remarks appear in section 9.
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2 Algorithm overview

2.1 Notation

n number of gridpoints × variables n ∼ 106

p number of observations p ∼ 105

wa gridded analysis state vector ∈ IRn

wf gridded forecast state vector ∈ IRn

wo observation vector ∈ IRp

I interpolation operator I : IRn → IRp

f non-linear observation operator f : IRp → IRp

F tangent linear version of f , F = ∂f/∂w F : IRp → IRp

h generalized interpolation operator, h(w) = f(Iw) h : IRp → IRn

H tangent linear version of h, H = FI, H : IRp → IRn

a non-linear forecast model a : IRn → IRn

A tangent linear version of a A : IRn → IRn

P f forecast error covariance P f : IRn → IRn

R observation error covariance R : IRp → IRp

P a analysis error covariance P a : IRn → IRn

Q model error covariance Q : IRn → IRn

2.2 The Sequential Data Assimilation Algorithm

In this section we briefly outline the Extended Kalman Filter algorithm (e.g., Cohn 1997
and references within) which provides the theoretical framework for the operational
data assimilation system that we implement. Suppose we are given a non-linear
forecast model

wf
k = ak−1(w

a
k−1) (1)

where wf
k is the forecast vector at time tk and wa

k−1 is the analysis vector at the
previous synoptic time. Having a gridded forecast state, one proceeds to compute
innovations or observation minus forecast residuals. The forecast state variables are
related to observations through a generalized interpolation operator h, viz.

vk = wo
k − h(wf

k) = wo
k − f(Iwf

k) (2)

The observation operator f acts on state variables at observation locations; the opera-
tor I interpolates state variables from grid points to observation locations. Neglecting
forecast error bias for the moment (Dee and da Silva 1998), the sequential EKF al-
gorithm is given by the following set of equations:

wf
k = ak−1(w

a
k−1) (3)

P f
k = Ak−1P

a
k−1A

T
k−1 +Qk−1 (4)

P a
k = (I −KkHk)P

f
k (5)

yk =
[
FkIkP

f
k IT

k F
T
k +Rk

]−1 (
wo

k − f(wf
k)

)
(6)

wa
k = wf

k + P f
k IT

k F
T
k yk (7)
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In the Violet Core System, forecast step in (3) will be accomplished by integrating
the NASA-NCAR atmospheric general circulation model, while (6)—(7) are solved
with the Physical-space Statistical Analysis System (PSAS, Cohn et al. 1998). The
forecast error covariance equation (4), as well as the analysis error covariance equation
(5) are computationally too expensive for a brute force implementation. Although
approximate algorithms for the evolution of the calculation of these matrices are
being developed (e.g., Cohn and Todling 1996, Todling et al 1999), current operational
practice is to specify these matrices from simple statistical models. A brief description
of the error covariance modeling in GEOS-2 DAS is described in DAO’s Algorithm
Theoretical Basis Document (DAO 1996). Ongoing research on the Parameterized
Kalman Filter (PKF) at DAO is aimed at developing practical approximations to
(4)-(5) which incorporate the important effects of flow dependency and anisotropy
absent in the current operational implementation of PSAS. This algorithm refinement
is beyond the scope of the Violet Core System.

3 Statistical Quality Control (SQC)

The on-line Statistical Quality Control (SQC) system attempts to identify observa-
tions that are likely to be contaminated by gross errors. The algorithms involve
statistical tests of the actual data against assumptions about their expected errors
and about GCM forecast errors. Essentially, a local statistical analysis is performed
for each outlier observation, i.e., for each observation that differs significantly from
the short-term forecast produced by the GCM. If this analysis indicates that the ob-
servation is inconsistent with surrounding data, then that observation is marked for
rejection.

The SQC encompasses a background check, a buddy check, a wind check, and a profile
check, each of which is described below. All checks are formulated in terms of the
observed-minus-forecast residuals (O-F) rather than the observations themselves. All
checks potentially modify the quality control marks associated with the observations,
but leave all other data attributes unchanged. The background check and buddy
check involve the forecast and observation error variances for the quantities being
tested, which are prescribed in the global analysis system.

3.1 Statistical aspects

The SQC algorithms operate on the vector of observed-minus-forecast residuals v
defined by

v = wo − f(Iwf ), (8)

where wo is the vector of observations, wf is the forecast vector, f is the observation
operator, and I is the linear operator which interpolates state variables from model
grid points to observation locations. The observation operator maps model variables
to observables. For remotely sensed radiances, for example, the function f represents a
radiative transfer model. It is simply the identity for conventional, in situ observations
of model variables.

The SQC attempts to identify corrupt data based on statistical expectations. This re-
quires knowledge of the covariance S of the observed-minus-forecast residuals, defined
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by
Sij = 〈vivj〉, (9)

with i, j indicating location. In general these covariances are poorly known, but a
rough estimate is available from the global analysis system. It follows from (8) that

S ≈ FIP fITF T +R, (10)

where F is the linearized observation operator

F =
∂f

∂w

∣∣∣∣∣
w=wf

, (11)

and P f , R are the covariances of forecast and observation errors, respectively. Equa-
tion (10) would be exact if forecast and observation errors were entirely independent
(they are not, since both types of errors depend on the true state) and if all observa-
tion operators were linear.

Specification of reasonably accurate error covariances is crucial to the quality of a
statistical analysis. We therefore assume that the right-hand side of (10), as pre-
scribed by the global analysis system, provides some useful information about the
residual error covariances. Accordingly, prescribed error statistics are used to define
tolerances for the background check, whose main purpose is to mark outlier observa-
tions for subsequent reexamination in the buddy check. However, since actual errors
depend on many unknown model defects and other intangibles, covariance specifica-
tions in operational data assimilation systems cannot be relied upon to accurately de-
scribe error characteristics in all situations at all times. In particular, during extreme
events—when quality control decisions become especially important—the covariances
as prescribed by the global analysis system are almost certainly inadequate. Thus, a
key aspect of the SQC is the attempt to adjust the prescribed error statistics based
on actual data. This adjustment takes place during the buddy check, before a final
accept/reject decision is reached for an outlier observation.

3.2 The background check

The background check tests each single observation against a background estimate,
which is simply the 6-hour model forecast interpolated to the time and location of
the observation. If the discrepancy is extremely large then the observation is rejected
outright. If the discrepancy is large, but not extremely large, then the observation is
marked as an outlier, to be reexamined in the buddy check. The tolerances for the
background check are defined in terms of standard deviations obtained from the error
statistics as prescribed by the global analysis system.

The algorithm is as follows:

For each observation wo
i :

mark wo
i as an outlier if |vi| > τoσi

mark wo
i as excluded if |vi| > τxσi

Here σi =
√
Sii, and τs, τx are prescribed non-dimensional tolerance parameters. Typ-

ically we take τo = 2, τx = 10.
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Figure 1: Illustration of the relationship between the rate at which the background
check marks observations as outliers and the prescribed error statistics, for normally
distributed errors. The yellow tails of the histograms correspond to observations
marked as outliers.

The rate at which the background check produces suspect marks presents a useful
check on the accuracy of the prescribed error statistics. If the forecast and observation
error variances are correctly tuned, and if the errors are roughly normally distributed,
then the suspect rate can be predicted. For example, when τo = 2, the rate should
be about 4.5%. If the actual suspect rate is larger (smaller), then the prescribed
error variance is too small (large). This is illustrated in Fig. 1. Monitoring the
background check failure rates for specific instruments has, in a number of cases, led
to adjustments of observation error statistics in GEOS DAS.

3.3 The buddy check

The buddy check is applied to a subset of observations which are considered sus-
pect, either because they were identified as an outlier by the background check, or
because they were marked as suspect during the preprocessing stage. The buddy
check attempts to predict the value of a suspect observation from nearby non-suspect
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observations (the buddies.) If the predicted value is in reasonable agreement with the
observation, then the observation is no longer considered suspect. If a sufficient num-
ber of buddies is available, then the tolerance for the buddy check is adjusted based
on a local estimate of O-F standard deviations. Once all suspect observations have
been tested, the entire process is repeated for all observations that are still considered
suspect. The process stops when the set of suspects no longer changes: all remaining
suspects are then rejected.

The buddy check initially labels observations as suspect based on their quality control
history. A single iteration of the algorithm is as follows:

For each suspect observation wo
j :

1. Define the set of buddies:

Nearby non-suspect observations of the same data type as wo
j are ranked ac-

cording to the scalar weight that each would receive in an optimal univariate
statistical analysis at the location of wo

j . The buddies are simply the n high-
est ranking of these, where n is a configuration parameter. Typically we take
n = 50.

2. Predict the value of the suspect observation based on its buddies:

Using the weights determined in the previous step, the weighted average v

j of

the vi associated with the buddies provides the optimal univariate analysis of
the buddies at the location of wo

j .

3. Adjust the prescribed estimate of the local O-F standard deviation:

If σ̂2
j is the sample variance of the vi associated with the buddies, the prescribed

variance σ2
j is adjusted according to

(σ

j )

2 = (n
σ2
j + nσ̂2

j )/(n

 + n) (12)

where n
 is a configuration parameter. Typically we take n
 = 25.

4. Reevaluate the status of wo
j :

Change the status of wo
j to non-suspect if

|vj − v

j | < τbσ



j (13)

where τb is a prescribed non-dimensional tolerance parameter. Typically we
take τb = 3.

These steps are repeated until no further observations change status. At that point,
any remaining suspect observations are marked for rejection.

The adaptive nature of the buddy check has two important consequences. First, the
final quality control decisions are not very sensitive to the prescribed error statistics in
the global analysis system. We have verified this experimentally by varying the toler-
ance parameter τo of the background check. It was found that the final accept/reject
status of observations is not very sensitive to the background check failure rate, as
long as this rate is roughly between 1% and 10%. This insensitivity to the prescribed
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statistics is a major practical advantage, since (1) these statistics are not very reli-
able and (2) the SQC algorithms do not require retuning each time the prescribed
statistics in the global analysis change.

The second consequence of adjusting rejection limits on the fly based on the local
variability of surrounding data is that the buddy check becomes increasingly tolerant
in synoptically active situations (and, conversely, more stringent when the flow is
smooth). This is best illustrated by an example, in which we contrast the results of a
nonadaptive buddy check against those of the adaptive buddy check. Figure 2 shows
two maps with quality control marks for zonal wind observations (obtained from
aircraft and rawinsonde reports) over North America at or near 200hPa, on January
14 1998. The top panel shows rejections (indicated by red marks) by a non-adaptive
buddy check, based on tolerances derived from prescribed statistics. Yellow marks
indicate data that were marked as outliers by the background check, but which passed
the buddy check. The lower panel shows rejections by the adaptive buddy check.
Tolerances are increased due to greater variability than implied by the prescribed
statistics, resulting in the acceptance of several additional outlier observations. The
effect on the wind analysis (not shown) is to increase wind speeds by about 3m/s in
some places.

3.4 The wind check

This check is applied to all u-wind and v-wind data to make sure that wind com-
ponents pass the quality control in pairs. The algorithm determines whether two
wind components are paired (i.e., whether they originate from the same report) by
matching their location attributes, instrument type, and sounding index.

3.5 The profile check

This check eliminates an entire vertical sounding in case any of the data from that
sounding are marked for exclusion. It is applied to selected data types only. Currently
the profile check is used for TOVS height retrievals only. For example, if the buddy
check rejects a TOVS height observation at 10hPa, then the entire sounding is marked
for rejection.

3.6 Special treatment of moisture observations

The analysed moisture field in GEOS DAS is water vapor mixing ratio, which is
highly variable in space and time. This causes difficulties for the buddy check, which
presumes that the field is spatially coherent on the scales resolved by the observing
network. Experience has shown that a buddy check applied to water vapor mixing
ratio observations (or, equivalently, specific humidity) tends to reject too many of
them, unless the tolerances are relaxed to a point where the quality control becomes
almost completely inactive. This is obviously not acceptable, unless preprocessing
quality control is completely reliable.

To remedy this situation, the statistical tests (background check and buddy check) in
the SQC are applied to relative humidity residuals. These residuals are computed in
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Figure 2: Quality control decisions for zonal wind observations at 200hPa on January
14 1998, using a non-adaptive buddy check (top) and adaptive buddy check (bottom).
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two ways: first, using observed mixing ratios and observed temperatures, and second,
using observed mixing ratios and model-predicted temperatures. This prevent the
situation in which a relative humidity looks good even though both mixing ratio and
temperature are corrupt. The tests are applied in sequence to both types of residuals,
and an observation passes QC only if none of the tests fail.

4 The Physical-space Statistical Analysis System

(PSAS)

4.1 The PSAS Solver

The PSAS algorithm solves the analysis equations (6) and (7) in a straightforward
manner. The innovation covariance matrix

M ≡ HP fHT +R (14)

entering (6) is symmetric positive definite, making a standard pre-conditioned conju-
gate gradient (CG) algorithm (Golub and van Loan 1989) the method of choice for
solving the large linear system (6). For the current observing system, setting up and
solving the linear system (6) represents about half the computational effort of PSAS,
and involves computation in observation space: M ∈ IRp×p and y ∈ IRp. The other
half of the computational expense is taken by step (7) which transfers the solution y
to the state space: P fHTy ∈ IRn. For additional technical details on the implemen-
tation of the PSAS solver consult da Silva and Guo (1996), Guo and da Silva (1997),
Guo et al (1998), Larson et al (1998)

4.2 Error covariance modeling

The error covariance models used for the initial Violet Core system will be the same
implemented for the GEOS-Terra system, with model parameters retuned as appro-
priate. These models were originally described in the ATBD (DAO 1996), with a
more up to date version appearing in da Silva et al (1999). The main characteristics
of these models are:

• PSAS employs compactly supported spline functions for modeling all single-level
univariate correlations. This means that the modeled horizontal correlations are
exactly zero beyond a certain finite distance (usually 6000 km). Currently, these
univariate correlation are horizontally isotropic. Three-dimensional covariances
are constructed in terms of single-level isotropic covariances.

• Geopotential height and mixing ratio errors are assumed uncorrelated.

• Wind-mass covariances are modeled according to a linear friction balance which
ensures the geostrophic balance of the analysis increments in the extra-tropics,
and cross-isobar flow near the surface and in the tropics.
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• In addition to the wind-mass balanced component, wind errors are allowed to
possess a unbalanced component which permits height decoupled wind analysis
increments in the tropics.

• Error covariance parameters entering these models are estimated with the maximum-
likelihood procedure of Dee and da Silva (1999).

• Height errors variances are adaptively estimated from observation minus fore-
cast residuals from radiosondes and TOVS retrievals. These variances can cap-
ture the variability of the height error variances on time scales longer than 15
days.

The initial configuration of the Violet Core system will rely on error covariance pa-
rameters tuned for the GEOS-2 DAS system. Once the system has been run for a
period of a month these parameters will be re-tuned using the output ODS files (da
Silva and Redder 1995). The forecast error variances will also be reestimated using
the adaptive algorithm described in DAO (1996).

4.3 PSAS extensions for interfacing with the NASA-NCAR
GCM

The current GEOS-2 version of PSAS analyzes global sea level pressure and near
surface winds over the oceans, as well as geopotential height, vector wind, and water
vapor mixing ratio on constant pressure surfaces. The upper air height/wind analyses
and the sea level pressure/surface wind analyses are multivariate. The moisture
analysis is performed using a univariate statistical algorithm at levels from 1000 hPa
to 300 hPa. The basic GEOS-2 DAS configuration consists of a 2◦ latitude by 2.5◦
longitude, and 18 vertical levels (0.4, 1, 5, 7, 10, 30, 50, 70, 100, 150, 200, 250, 300,
400, 500, 700, 850, 1000 hPa).

The finite-volume formulation of the NASA-NCAR GCM, and the flexibility afforded
by the observation-space formulation of PSAS calls for a redesign of the model-
analysis interface. Towards this goal, PSAS will produce analysis increments directly
on model levels. As a computational device, the analysis increments at some model
levels will be computed as an interpolation from adjacent levels; the validity of this
approach will be assessed through numerical experimentation. PSAS will produce
analysis increments winds, geopotential heights and a moisture variable to be deter-
mined (e.g., log of specific humidity or dew point temperature). The computation of
analysis increments of surface pressure and other interface related issues are addressed
in section 5.

5 Interfacing the NASA-NCAR GCM fields to the

statistical analysis

This section introduces the algorithmic details of the analysis-model interface which
differs in many respects from the sigma-to-pressure/pressure-to-sigma approach in
GEOS-2 DAS (Pfaendtner et al 1994, DAO 1996). We start by defining the NASA-
NCAR GCM state vector in subsection 5.1, along with its associated finite-volume
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mesh. The simulation of observations to be included in the Violet Core System is
discussed in subsection 5.2. Finally, we describe the computation of analysis incre-
ments of surface pressure, and the mapping of PSAS analysis increments to the new
vertical grid associated with the after analysis surface pressure.

5.1 The NASA-NCAR GCM state vector

The first guess vector wf provided by the NASA-NCAR GCM will consist of the
following variables:

wf = (u v h q δp)T (15)

where

u zonal wind (m/s)
v meridional wind (m/s)
h geopotential height (m)
q specific humidity (g/kg)
δp pressure-thickness of the finite-volume

h

h

p

p

= p
1

p  =  ps       K+1

  u, v
pk

k

k+1

δ θ, q
*

k+1

k

p
top

Figure 3: Finite Lagrangian control-volume and state variables.

All these 3D fields will be given on the same regular latitude-longitude grid (the
staggered wind components will be averaged to coincide with the other fields). The
finite Lagrangian control volume of the NASA-NCAR GCM is illustrated in Fig. 3.
There are K vertical layers, with the pressure at the edge of these layers given by
p1 = ptop, and

pk = ptop +
k−1∑
�=1

δp�, k = 2, ..., K + 1 (16)
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where the subscript k refers to the vertical level/layer. Notice that the surface pressure
is given by ps = pK+1. The pressure thickness δp is a prognostic variable which is
evolved by the finite-volume dynamical core. However, after each time-step model
fields are mapped from this Lagrangian control-volume vertical coordinate to a fixed
Eulerian reference coordinate given by:

pk = ak + bkps, k = 1, ..., K + 1 (17)

The coefficients ak and bk are chosen in such way to provide for hybrid contant-
pressure/terrain-following vertical coordinate. Namely, for k ≤ ks (p < pks+1 ≡
pint) we have constant pressure surfaces (bk = 0 for k ≤ ks + 1), while a terrain
following vertical coordinate is used for k > ks. At the surface, pK+1 = ps, implying
ak+1 = 0 and bK+1 = 1. Figure 4 illustrates typical values of ak and bk for K = 55,
ps = 1000 hPa and pint = 100 hPa; also shown is the normalized pressure coordinate
ηk = (pk − ptop)/(ps − ptop).

Figure 4: Fixed Eulerian reference coordinate system. See text for details.

For the purpose of data assimilation, we will assume that u, v, q and the (scaled)
virtual potential temperature

θk = − g

Cp

· hk − hk+1

pκ
k − pκ

k+1

, κ = R/Cp (18)
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represent the (mass-averaged) finite-volume mean. For interpolation purposes, we
will assume that these volume-mean variables are valid at the center of mass of the
Lagrangian control volume, which has vertical coordinate

pk+1/2 =
1

2
(pk + pk+1) (19)

The horizontal coordinates of the center of mass will be approximated by averaging
the latitudes/longitudes at the edges of the gridboxes. Notice that the geopotential
field h is given at the pressure edges of the finite control-volume, but horizontally at
the center of the gridbox.

5.2 Simulating observations from the NASA-NCAR GCM
fields

The observing system

The Violet Core System will include the following observing systems:

Land Surface observations. The system will assimilate hourly station pressure
observations to take advantage of the Rapid Update Cycle capability. The
feasibility of assimilating hourly specific humidity observations at 2 meters will
be examined.

Ocean surface observations. The system will be capable of assimilating sea level
pressure, winds, and specific humidity from ships, buoys, and sea platforms.
Taking proper consideration of anemometer height, these surface observations
will be homogenized to a standard level (right above the surface layer) using
similarity theory.

Rawinsondes. The usual height, winds and moisture at mandatory levels. The
assimilation of significant level data will be examined.

TOVS Retrievals. The system will initially assimilate TOVS layer mean tempera-
ture retrievals, converted to height retrievals using the first guess for the lower
boundary condition. The system shall work with interactive or non-interactive
retrievals, whichever is available at the time.

Aircraft winds. Zonal and meridional wind components.

Cloud track winds. Zonal and meridional wind components.

The observation simulator

The key quantity needed by the on-line QC system, and ultimately by PSAS, is the
innovation or observation minus forecast (O-F) residual

v = wo − h(wf ). (20)
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For a generalized observable, say, radiances, the non-linear observation operator h can
be represented as an interpolation operator I applied to the model fields, followed by
a radiative transfer model, f , viz.

h(wf ) = f(Iwf ). (21)

However, the Violet Core System will only assimilate data types directly related to
the state variables, therefore only the interpolation operator I will be described.

With the exception of geopotential heights, all the observables listed in subsection 5.2,
are point measurements. For these observables, the model fields will be interpolated
bi-linearly in latitude-longitude in the horizontal, and linearly in log-p in the vertical.
For geopotential height, being a column integral, special attention will be paid to
proper weigh partial volumes. Notice that the error of representativeness associated
with this observing system is simply related to the spatial standard deviation of each
observable within the Lagrangian control-volume.

5.3 The after analysis surface pressure

f
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Figure 5: The after-analysis height and surface pressure.

As mentioned in section 4, PSAS will produce analysis increments directly on the
model finite-volume grid. That is, on the latitude-longitude of each gridbox, and on
the pressure levels/edges implied by the first guess pressure-thickness δpf . We will
denote the analysis increments on this first guess grid by δŵa. In particular, for the
lowest atmospheric level we have

ĥa
K+1 = hs + δĥa

K+1 (22)

where hs is the topographic height. Since in general δĥa
K+1 �= 0, we have ĥa

K+1 �= hs

and this pressure level, therefore, no longer corresponds to the surface. The new
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surface is located at the pressure level for which ĥa = hs (see Fig. 5). From the
discrete form of the hydrostatic equation we have

δĥa
K+1 = ĥa

K+1 − hs

= −Cp

g
θ∗

[
(pf

s )
κ − (pa

s)
κ
]

(23)

where the (yet) undetermined quantity θ∗ is the the mean virtual potential temper-
ature in the layer between pressures pf

s and pa
s . An expression for the after-analysis

surface pressure follows from (23):

pa
s = pf

s ·

1 + gδĥa

K+1

Cpθ∗(p
f
s )κ




1/κ

(24)

Notice that θ∗ enters this equation in the denominator, and therefore the final value of
pa

s is not very sensitive on the precise value of θ∗. For typical values, pf
s ∼ 1000 hPa,

δĥa
K+1 ∼ 100 m, T∗ = (pf

s )
κθ∗ ∼ 300 K, we estimate that an error of 5 K in T∗ corre-

sponds to less than 0.2 hPa error in pa
s . For the calculation in (23), thus, we compute

θ∗ as the layer-mean virtual temperature at the lowest control-volume associated with
pf

s , viz.

θ∗ ≈ − g

Cp

· ĥa
K+1 − ĥa

K

(pf
K+1)

κ − (pf
K)κ

(25)

5.4 Mapping of analysis fields

Once we have determined the after-analysis surface pressure, one is faced with the
question of how to come up with the after-analysis pressure-thickness δpa for each
finite control-volume. This quantity is an abstract concept associated with the par-
ticular discretization of the NASA-NCAR GCM; it is not clear at this stage whether
this quantity could ever be observed. In order to close the problem, we will consider
two different approaches:

Method I: Remapping to Eulerian reference coordinates

In this approach, we simply adopt an Eulerian reference coordinate system consistent
with this new value of ps = pa

s , viz.

pa
k = ak + bkp

a
s , k = ks + 1, ..., K + 1 (26)

and compute the after analysis pressure thikness δpa consistent with it:

δpa
k = δak + δbkp

a
s , k = ks + 1, ..., K + 1 (27)

where δak = ak+1 − ak, δbk = bk+1 − kk. Notice that pa
k = pf

k for k = 1, ..., ks since by
construction the top pressure levels (above pint = pks+1) do not depend on the surface
pressure (see Figure 4).
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At this point, the first guess wf and the analysis increments δŵa returned by PSAS
are still on the before-analysis pressure levels, pf

k , k = 1, ..., K + 1. The analysis
field,

ŵa = wf + δŵa, (28)

therefore, needs to be mapped to the new vertical grid implied by the after-analysis
pressure levels given by (26). For this purpose we adopt the same monotonicity-
preserving, and mass-, momentum-, and total energy-conserving mapping algorithm
used in the finite-volume dynamical core; for details consult the companiom document
DAO ATBD / Next-Generation Model. Notice that no mapping is necessary for the
pure-pressure levels above pks+1 = pint).

Method II: Shaving of model lowest layers

In this approach, we simply add or remove mass from the lowest layers. When pa
s > pf

s ,
we simply add mass to the lowest model layer by setting

δpa
K = δpf

K +
(
pa

s − pf
s

)
(29)

keeping δpa
k = δpf

k , for k = 1, ..., K − 1. The volume-mean values of all quantities are
not altered by this expansion of the lowest control volume.

However, when pa
s < pf

s , (29) can lead to very small or even negative values of δpa
K ,

requiring some special handling. In some cases, it is necessary to remove one or
more of the model lowest layers in order to accomodate the new value of the surface
pressure pa

s . (In practice, model layers are removed by assiging an extremely small
mass to it.)

The main advantage of the shaving method is that no mapping or interpolation is
necessary except for those one or two lowest model layers affected. However, the
resulting Lagrangian control volume could be very different from the fixed Eulerian
reference coordinate (17). For this reason, when using this shaving method we defer
output until after the fields have gone trough the Finite-volume dynamical core and
physics modules, which includes a remapping to the fixed Eulerian reference coordi-
nate system, and necessary physical adjustments.

Remarks

1. Notice that in the current GEOS-Terra system, the analysis increments returned
by PSAS on mandatory pressure levels are not interpolated to the sigma levels
implied by the after analysis surface pressure field. This procedure will created
artificial analysis increments (on pressure surfaces) in the absence of upper data
simply because the first guess field never gets mapped to the new sigma-levels
(assuming that surface data was present).

2. Our experience with the GEOS-2 DAS has demonstrated the difficulty of using
mixing ratio as the analysis variable. Statistical analysis of O-F residuals indi-
cate the mixing ratio (as well as specific humidity) have distributions which are
far from normal. For this reason, it is likely that a new moisture variable will
be used for analysis. Candidate variables are the log of specific humidity or the
dew point temperature.
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3. The NASA-NCAR GCM is carefully designed to conserve the dry-air contribu-
tion to the global mean surface pressure, while allowing the moist-air contribu-
tion to fluctuate according to the global mean imbalance of evaporation minus
precipitation. However, in data assimilation mode, both dry- and moist-air con-
tributions to the global mean surface pressure may fluctuate in time due to the
partial coverage of the observing system, as well as observational errors. The
time evolution of the global mean surface pressure shall be carefully monitored,
and if necessary, a correction will be applied to avoid large fluctuations of the
dry-air contribution to the surface pressure.

6 Issues related to balance and initialization

The initial implementation of the Violet Core System will not include the Incremental
Analysis Updates (IAU) of Bloom et al (1998). Instead, PSAS-based analyses will
be performed intermittently every hour or so, in the so called Rapid Update Cycle
(RUC).

The current implementation of PSAS employs a relatively traditional error covariance
model strategy: horizontal correlations for the mass field and moisture are assumed
isotropic, and variances are time mean estimates. These assumptions, although al-
ready questionable for a 6 hour assimilation cycle, are even more dubious for a shorter
assimilation cycle. Error covariance modeling theory suggests that the 1 hour forecast
error is strongly influenced by the analysis error field which is known to be highly
anisotropic (due to the inhomogeneity of the observing system) and to have a strong
time dependency. Therefore, an 1 hour cycle analysis is expected to be less “opti-
mal” than a 6 hour cycle analysis insofar covariance modeling is concerned. However,
the RUC analysis has the benefit of utilizing the observations much closer to the
observation time. The relative importance of these two competing effects can only
be assessed by implementing a RUC analysis and comparing it with the traditional 6
hour assimilation cycle.

In order to investigate these issues, a RUC with a assimilation interval of 1 hour have
been implemented in the current GEOS DAS at 2x2.5 and 4x5 degree resolutions.
These initial RUC experiments include IAU (increments are now introduced within a
time window, 30 minutes before/after analysis time), although a mathematical anal-
ysis of the IAU algorithm (Bloom et al 1998) indicates that IAU looses its low-pass
filter capabilities for such a short assimilation cycle. Consistently, examination of
surface pressure tendencies produced with the RUC system indicates a slight increase
in the noise level for some regions, accompanied by a slight increase in the height O-F
standard deviation, and a decrease in wind O-F standard deviation. By sampling the
forecast fields much closer to observation time, anomalous O-F variance in the strato-
sphere associated with missampled tidal motions have been eliminated. Surprisingly,
the RUC system has also a positive impact on the climate of the system. The zonal
mean meridional circulation has a stronger Hadley circulation, and eliminates some
undesirable small scale structure at 70 hPa near the equator. These preliminary
results seem to indicate that the benefits of using data closer to observation time
outweighs the “violation” of the covariance modeling assumptions. One possible in-
terpretation is that within the current framework of isotropic correlations/time-mean
error statistics the basic assumptions are already violated with a 6 hour cycle, and
shortening the assimilation cycle does have any significant impact on the system.

As these RUC experiments indicate, the more frequent analysis is slightly noisier, and
this increased noise can potentially have a deleterious effect on the extended forecasts.
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One way of controlling this spurious noise is by adding an additional constraint to
the analysis which penalizes the contribution of the upper level analysis increments
to the surface pressure tendency; the goal of this approach is to filter out divergent
motion associated with the external mode. Another approach, which is particularly
attractive due to its simple implementation, is to perform initialization by means of
a digital filter. In this algorithm, a short term forecast (say, 6 hours) is run from the
non-initialized analysis, and the model state variables are averaged in time according
to pre-determined filter coefficients (Fillion et al. 1995, Lynch and Huang 1994). The
extended forecast is then restarted at the middle of the initial short term period (say,
at 3 hours) from the averaged (filtered) model state. We plan to assess the effect
of a digital filter on the forecast skills produced with the Violet Core System. If
such analysis indicates a large degree of imbalance (as measured by the amount of
filtering performed), the implementation of additional penalty terms in PSAS will be
evaluated.

7 Testing Strategy

The ultimate goal of data assimilation is to combine the information content of a
climate model with observational data to produce the best snapshot of the earth
climate system. In this sense, by constraining the prognostic variables, a data assim-
ilation system is expected to add value to a climate simulation. In practice, however,
experience has shown that the information content of model/observations are not
always additive. Complex non-linear interactions between observations and GCM
parameterizations which have been tuned for a climate state other than the observed,
can actually result in some climate parameters being degraded in the process of data
assimilation (e.g., Molod et al 1996). A point in case is the zonal mean meridional
circulation and precipitation fields for the GEOS DAS. The GEOS GCM in AMIP
simulation mode produces a stronger Hadley cell and sharper ITCZ than the corre-
sponding GEOS DAS, both of which are believed to be deficiencies in early DAS prod-
ucts. Therefore, prior to assessing the climate parameters in assimilation mode we
will perform parallel AMIP style simulations for the same periods (see subsection 7.2)
and conduct intercomparisons of the climate parameters in simulation/assimilation
modes.

Next we outline the main components of this pre-validation assessement. The main
objective of this testing phase is to establish the readiness of the Violet Core System
for a full validation exercise. Therefore, a detailed validation plan is beyond the scope
of this document and will appear elsewhere.

7.1 General system configuration and resolution

Ultimately, the new DAO physical-space/finite-volume DAS will be at least at a 1
degree horizontal resolution. However, in this early developmental stage we will be
concentrating on a hybrid system configuration which is compatible with the current
GEOS-Tera system, that is, a 1x1.25 degree resolution model coupled to an analysis
system producing 2x2.5 degree resolution analysis increments. In addition to provid-
ing more direct means of comparison with the current system, the faster throughput
of this hybrid system can also expedite the tuning process. At the software level, the
system will be designed in such a way that the resolution be specified at compilation
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time (NASA-NCAR GCM) or at run time (PSAS and QC components).

NASA-NCAR GCM resolution: 1x1.25 horizontal resolution, 55 vertical layers,
ptop = 0.01 hPa.

Analysis resolution: 2x2.5 horizontal resolution, 30 analysis layers with 25 shadow
layers,
ptop = 0.01 hPa. Recall that the analysis increment at shadow layers are ob-
tained through vertical interpolation. This interpolation will be performed out-
side PSAS in a GCM consistent fashion.

Remark

Notice that the analysis field, wa = wf + δwa can preserve the 1 degree features
implied by the first guess wf ; only the corrections to the first guess, δwa, will be
performed at lower resolution and interpolated to the finer resolution grid. The cal-
culation of innovatons, v = wo−Hwf , will also be performed at full model resolution.
This incremental formulation of the data assimilation algorithm is commonly used in
operational implementation of 3D-VAR/4D-VAR algorithms (e.g., Coutier et al. 1994,
Laroche et al. 1999). The scientific basis of this approach comes from the smoothness
of the analysis increments δwa which is a consequence the large error decorrelation
length scales used by these analysis systems. As the error covariance modeling evolves
in PSAS, e.g.,, through the Parameterized Kalman Filter effort (S. Cohn, personal
communication), it is expected that ultimately both model and analysis will be op-
erating at the same resolution. Therefore, it is crucial that a resolution-independent
system be designed.

7.2 Testing Periods

The validation exercise will focus on the following periods:

Winter 1998: from 11/15/1997 to 2/28/1998. This is a standard season for recent
validation. OLR estimates from CERES can be used for assessing the radiation
fields.

Summer 1998: from 5/15/1998 to 8/31/1998. Again, there several pre GEOS-Terra
DAS experiments for comparison.

Fall 1999/Winter 2000: from 9/1/1999 to present. This period coincides with the
beginning of operational GEOS-Terra activities.

7.3 Assessing the Observing system

This component focus on comparing the system output directly to observations. Tra-
ditionally, one has focused on observation minus forecast residuals (O-F) from the
DAS. However, the same tools can be used to assess the output from a pure model
simulation, although this is optional for this project.
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O-F residuals. Regional averaged bias and standard deviations, as well as horizontal
maps for selected levels in the PBL, troposphere and stratosphere. Metric: O-F
mean and standard deviations should be smaller or comparable to O-F statistics
from the GEOS-Terra system.

O-A residuals. Analysis similar to O-F. The goal here is to verify that the obser-
vational data is represented in the analysis. Metric: none, as drawing closer
to the data does not necessarily translate into better analysis. The O-A tests
of Hollingsworth and Lonnberg (1989) are not required at this stage.

7.4 Assessing analysis and forecasts

This component applies only to DAS fields.

Analysis intercomparison. Check analysis of height, winds and moisture against
corresponding ECMWF (or NCEP) reanalysis. Metric: none, as the ECMWF/NCEP
analysis cannot be taken as ground truth.

Forecast skills. Anomaly correlations and RMS for Northern/Southern hemisphere
extratropics, and tropics, verifying against own analysis (or ECMWF analysis).
Also, verify forecast against observations (O-xF).Metric: anomaly correlations
should be higher, and RMS smaller, compared to GEOS-Terra.

Balance issues. Plot spatial RMS of surface pressure tendency as a function of
time, and temporal RMS as a function of longitude/latitude. Metric: the
RMS of surface pressure tendency should be similar or smaller compared to
GEOS-Terra.

Transport characteristics. Use assimilation winds to drive ozone assimilation sys-
tem and examine impact on ozone O-F’s. Metric: ozone system driven by
the Violet winds should produce smaller or comparable O-F to control system
forced by GEOS-Terra winds.

7.5 Assessing the Climate Diagnostics

This component applies to both simulation and assimilation monthly mean fields.

Zonal mean circulation. Compare zonally averaged monthly mean winds, temper-
ature and moisture to ERA/NCEP reanalysis. Metric: simulations should be
closer to reanalyses; assimilation fields not necessarily.

Stationary waves. Compare stationary waves of temperature, streamfunction, ve-
locity potential, and moisture at 850 hPa, 300 hPa and 1 hPa, zonal cross-
sections at 45S, equator and 45N, meridional cross-sections at 90W, at the
prime meridian, and 90E. Metric: simulations should be closer to reanalyses;
assimilation fields not necessarily.

Precipitation. Compare monthly mean precipitation to GPCP/NCEP raingauge
estimates, assessing mean diurnal cycle whenever possible. Metric: Patterns
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of both simulation and assimilation fields should be closer to independent es-
timates compared to GEOS-Terra; precipitation amounts should be evaluated
within the accuracy of each estimate.

Clouds. Compare monthly mean low, middle and high clouds to ISCCP (1992 only).
Metric: both simulation and assimilation fields should produce estimates
closer to independent estimates compared to the GEOS-Terra system.

Surface radiation budget. Compare monthly surface radiation parameters to SRB
and Man-Li Wu estimates; assess skin temperature as well. Metric: both sim-
ulation and assimilation fields should produce estimates closer to independent
estimates compared to the GEOS-Terra system.

Top-of-atmosphere radiation budget. Compare radiation diagnostics to NOAA/OLR
(1992/98) and CERES estimates (1998 only). Metric: both simulation and
assimilation fields should produce estimates closer to independent estimates
compared to the GEOS-Terra system.

8 Open problems and issues not addressed by the

”Violet” System

The Violet Core system described in this document does not address all the issues
necessary for the full implementation of an operational data assimilation system.
Several of the issues which will require attention after this initial “fast prototype”
phase are listed below.

1. TheViolet Core System will be developed under the ”shared memory” paradigm,
although the overall system architecture will be carefully designed to accommo-
date a subsequent MPI implementation. This computational issue is beyond of
the scope of this document.

2. The Violet Core System will not produce output compliant with the DAO File
specs:

Analysis output: the analysis output stream, including ODS, and before- and
after-analysis states using GFIO (HDF/COARDS compliant) will be simi-
lar to GEOS-Terra. However, the gridded fields will be on the model grid,
not on mandatory levels.

NASA-NCAR GCM output: there are no plans to reconcile the GCM out-
put with the file specs for the Violet system. However, the output files are
in IEEE or NetCDF format which can be directly read by analysis tools
such as GrADS and Matlab, without presenting great difficulties for the
validation exercise.

3. As GEOS-Terra, the version of PSAS using in the Violet Core System still does
not support explicit observation operators. Therefore, only those observables
directly related to state variables can be assimilated.

4. The following GEOS-Terra observing systems are not being included in this
initial implementation:

• Satellite derived surface wind speeds: SSM/I
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• SSM/I total precipitable water

These observing systems are being excluded in the interest of time, as they
require some degree of exception handling. There is no built in limitation pre-
venting the assimilation of these data types. For the Fall 1999, experimental
wind velocity retrievals from QuickScat will be used to assess the impact of
satellite wind observations.

5. No explicit analysis bias correction will be initially implemented (Dee and da
Silva 1998).

6. As in GEOS-Terra, this system still relies on time mean forecast error variances
adaptively estimated with ATESS. The overall system architecture, however,
is being designed in such a way as to replace the ATESS estimates with flow
dependent statistics afforded by the Parameterized Kalman Filter effort (S.
Cohn, personal communication).

7. The impact of not having IAU on model diagnostics is still to be determined.
Early experience with RUC on GEOS-DAS seems to suggest the feasibility of
this approach.

9 Concluding Remarks

We have described the main scientific attributes of the new DAO Physical-space/Finite-
volume Core Data Assimilation system, focusing on an initial configuration which is
intended to serve as a proof of concept for this new system. As of this writing (Jan-
uary 2000), the main software software components have been written and unit tested.
Integration test is currently in progress.
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List of Acronyms

ATBD Algorithm Theoretical basis Document
AMIP Atmospheric Model Intercomparison Project
ATESS Adaptive Tuning of Error Statistics Subsystem
CCM Climate Community Model
CCM3 Climate Community Model Version 3
CERES Clouds and Earth’s Radiation Energy System
COARDS Cooperative Ocean-atmosphere Data Service
DAO Data Assimilation Office
DAS Data Assimilation System
ECMWF European Center for Midrange Weather forecasts
EKF Extended kalman Filter
GCM General circulation Model
GEOS Goddard Earth Observing System
GPCP Global Precipitation Climatology Project
HDF Hierarchical Data Format
IAU Incremental Analysis Updates
ITCZ Intertropical Convergence Zone
NCEP National Centers for Environmental Predictions
NOAA National Oceanographic and Atmospheric Administration
OI Optimal Interpolation
OLR Outgoing Longwave radiation
PSAS Physical-space Statistical Analysis System
PKF Parameterized Kalman Filter
QC Quality Control
RUC Rapid update Cycle
SQC Statistical Quality Control
TOVS TIROS Operational Vertical Sounder
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